Surface enhanced fluorescence of anti-tumoral drug emodin adsorbed on silver nanoparticles and loaded on porous silicon
نویسندگان
چکیده
Fluorescence spectra of anti-tumoral drug emodin loaded on nanostructured porous silicon have been recorded. The use of colloidal nanoparticles allowed embedding of the drug without previous porous silicon functionalization and leads to the observation of an enhancement of fluorescence of the drug. Mean pore size of porous silicon matrices was 60 nm, while silver nanoparticles mean diameter was 50 nm. Atmospheric and vacuum conditions at room temperature were used to infiltrate emodin-silver nanoparticles complexes into porous silicon matrices. The drug was loaded after adsorption on metal surface, alone, and bound to bovine serum albumin. Methanol and water were used as solvents. Spectra with 1 μm spatial resolution of cross-section of porous silicon layers were recorded to observe the penetration of the drug. A maximum fluorescence enhancement factor of 24 was obtained when protein was loaded bound to albumin, and atmospheric conditions of inclusion were used. A better penetration was obtained using methanol as solvent when comparing with water. Complexes of emodin remain loaded for 30 days after preparation without an apparent degradation of the drug, although a decrease in the enhancement factor is observed. The study reported here constitutes the basis for designing a new drug delivery system with future applications in medicine and pharmacy.
منابع مشابه
Formation Regularities of Plasmonic Silver Nanostructures on Porous Silicon for Effective Surface-Enhanced Raman Scattering
Plasmonic nanostructures demonstrating an activity in the surface-enhanced Raman scattering (SERS) spectroscopy have been fabricated by an immersion deposition of silver nanoparticles from silver salt solution on mesoporous silicon (meso-PS). The SERS signal intensity has been found to follow the periodical repacking of the silver nanoparticles, which grow according to the Volmer-Weber mechanis...
متن کاملCellular interactions of surface modified nanoporous silicon particles.
In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular associ...
متن کاملInvestigation of cytotoxicity properties of zinc oxide nanoparticles in spherical and rod shaped on leukemia cells
In this study, we reported a method to associate doxorubicin drug on folic acid functionalized SiO2/ZnO nanoparticles (NPs) in rod and spherical shapes. The clinical usage of the anticancer drug, doxorubicin (DOX), is limited by severe side effects and cell resistance. Targeted drug delivery by binding DOX to nanoparticles could overcome these limitations. The surface functionalization of the Z...
متن کاملRaman Study of the Photochemistry of Maleic Acid Adsorbed on the Surface of Colloidal Silver
The surface-enhanced Raman scattering (SERS) spectra of maleic (cis; 2-butaneoic acid) and fumaric (trans; 2-butaneoic acid) acids adsorbed on aqueous silver sol particles are reported. These two acids form two groups of isomers which differ only in the relative positions of the two carboxylate groups. The photochemistry of maleic and fumaric acids adsorbed on the surface of silver colloids...
متن کاملNanostructured substrate with nanoparticles fabricated by femtosecond laser for surface-enhanced Raman scattering
A simple and fast method to fabricate nanostructured substrates with silver nanoparticles over a large area for surface-enhanced Raman scattering (SERS) is reported. The method involves two steps: 1) dip the substrate into a silver nitrate solution for a few minutes, remove the substrate from the solution, and then air dry and 2) process the silver nitrate coated substrate by femtosecond (fs) l...
متن کامل